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I. Let us study the motion of an orbiting vehicle in a circular orbit 
subject to a lateral force F. lhe vector of this force lies at all times 
in the plane of the horizon and is directed normal to the velocity 
vector. For the chosen direction of the force it can be easily shown that 
the velocity modulus and the orbit altitude remain constant during the 
motion process and equal to the initial values 

F = F. = COIlSt, v,= Go = const 

In the general case of a point mass in a 
central gravitational field the system of 
equations is Cl] 

. . f, 
F-F~COS2f&F~2=-~~+ m 

2&OSfl f F+OSfh2F~8SiId = 2 

Fig. 1. 

Here ~1 is the gravitational constant, F, # and 8 are spherical coordi- 
nates of a point, where B is the latitude (Fig. 11, measured from the 
equatorial plane; f,, f4, fO are the coordinate components of the ex- 
ternal force; m is the mass of the vehicle. 

Without limiting the generality, we shall assume that the unperturbed 
circular orbit lies in the equatorial plane. 

The initial conditions of system (1.1) are 
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r = ro, r=o, cp==o, (p=oo, e = 0, e=o at t=O (1.2) 

(00 = vzq 
Here oO is the angular velocity of the vehicle along a circular orbit 

of radius rO, The coordinate components of the lateral force (Fig. 2) can 
be expressed as follows 

fr = 0. I, = - Fool 4, fs = Fo,--‘cpcos e (1.3) 

Taking into account (1.3) with the system (l.l), one can derive an 
eqkion on 8, which determines the deflection of the vehicle from the 
initial orbit: 

B - B2 tan fl+ oo2 tan 8 =monr -2, n, = F/mg, (1.4) 

where nZ is the lateral thrust acceleration. 

Let us assume that the lateral thrust acceleration tax is constant 
during the motion process. Let us introduce into the analysis the func- 
tion u(O) = d(oOz - f3’). Then Equation (1.4) can be reduced to a linear 
form and its solution becomes: 

1 - n, sin 0 
U = 00 cos 0 (1.5) 

Pie. 2. Fig. 3. 

After a reversal to the variable 6 = O(t), taking into account the 
initial conditions (1.2), the solution of Equation (1.4) will be 

sin 0 +-&1- - cos r/l + n,so,q (1.6) 
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For nz << 1 the formula obtained by L.A. Simonov is valid 

sin0 =n,(1 -eos6@) (9.7) 

It follows from (1.6) that the angle 8 is a periodic function of time 
(Fig. 31, whose period r and amplitude O1_ are, respectively 

2rr 
IT= e mas = 

-1 
Sill 

2% 

001/W' 1 +nza 

Using lkpressions (1.5) and (1.61, one can obtain the 
the angle 4. 

solution for 

Thus, the general solution of the system (1.11, which determines the 
motion of the vehicle under the action of 
initially on a circular equatorial orbit, 

r = ro 

a lateral force and which lies 
is as follows: 

8 -1 = sin g-&l -cos W) 
cp = tsn_l VU? sin ‘c/l +,nza w 

= + eos y3q-p OoC nz 

2. A study of the solution obtained ahove shows that the torsion T of 
the trajectory (1.8)‘ which describes 
is equal to zero. Indeed, 

Here p is the radius of curvature of the curve and x, y, z are the co- 
ordinates of the vehicle in a Cartesian coordinate system 

its departure fras a plane cnrve, 

2' y' 2' 
ti y" 2" (2.1) 
2" y" P 

( sin 8 
X=rCOSecosCp=r 1-y , 2 1 

y=rcosesin~=~~cosae-((i-_IL,sin8)2 (2.2) 

z=rsin0. 

It can be easily seen that the determinant in (2.1) is equal to zero, 
since when the determinant is expanded in terms of the elements of the 
second column, all its minors are equal to zero. Consequently, T- 0, 
i.e. the trajectory of the flight of the vehicle is a plane curve. 

Applying the usual tools of analytical geometry we can find the 
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equation of the plane II (Fig. 3) which contains the trajectory given by 

(1.8). We obtain 

n,.r +- 2 - n,r, = 0 (2.3) 

The plane (2.3) is inclined to the plane of the unperturbed orbit 

I$(2 = b) at an angle 

r = tan-l n, (2.4) 

where 

r= +Omax at nZ < 1 

7 =+n--+Omax at n,>l 

The radius of curvature of the 

trajectory during motion remains, 

of course, constant and equal to 

p = 1/l ;nza (2.5) 

thus, under the action of a 

constant lateral thrust accelera- 

Fig. 4. 

tion nz, the orbital plane of the vehicle which initially moves along 

the circular orbit I$, of radius rO (Fig. 3), will rotate by an angle y, 

given by (2.4), and the vehicle will continue its motion in the plane of 

the small circle with an orbital radius p = ‘O cos y. The velocity 

modulus and the altitude of vehicle flight remain constant and equal to 

the respective initial values. The perturbed vehicle trajectory is 

tangent to the original orbit at the point t = 0, i.e. after every re- 

volution the vehicle returns to the initial point of the unperturbed 

orbit. 

3. ‘Ihe foregoing discussion referred to the case of a continuous 

action of a lateral force. After a discontinuation of the action of this 

force, the vehicle orbit will again become central and inclined relative 

to the unperturbed orbit by some angle 9, as shown in Fig. 4. There 1 is 

the original orbit, 2 is the orbit with the presence of a constant 

lateral thrust, 3 is a section of powered flight, 4 is the orbit after a 

discontinuation of the thrust, and AB and A’B’ are the maximum eleva- 

tions of the vehicle. 

Let us study the problem of determining $ under the condition that 
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the lateral acceleration is produced by a direct thrust of an engine 

with a given propellant mass fraction a = const. Then the time of opera- 

tion of the engine t and the constant lateral thrust acceleration nz 

produced by it will be related by 

Here J is the specific impulse of the engine. The vehicle trajectory 
consists of two parts in the case of a limited time of thrust action; 

the active part 3 and the passive part 4 (Fig. 4). Of course, the magni- 

tude of the angle $ will be equal to the maximum value of the elevation 

angle of the vehicle from the original orbit, 8,,,, along the passive 

segment of the trajectory at the instant where Ci = 0. 'Ihis value of $= 

e l~.x can be found from Equation (1.1) with f, = 0, f+ = 0, and fs = 0 
and the initial conditions, which correspond to the values of the func- 

tions r, 0 and $ and their derivatives given by (1.8) at the end of the 

active segment at t = t,. 

As was shown above, the velocity of motion along the active segment 3 
is equal to the circular velocity corresponding to the flight altitude 

of the vehicle, where the altitude and the velocity modulus remain con- 

stant during the motion. Consequently, after the discontinuation of the 

lateral thrust, the vehicle will move along a circular orbit 4 with the 

previous values of velocity modulus and altitude. 

When the above is considered one can derive the following equation 

from (1.1): 

8-bane+m02 tsn e-0 (3.2) 

After the substitution p(0) = 8 cos 8, Equation (3.2) reduces to a 

first order equation with separable variables. After some simple trans- 

formations we obtain the first integral of Equation (3.2) 

1 

fj= --& (fQ CO82 8, - f w*2 cos 26, + $ CO@2 COS 29” (3.3) 

where 8, and 8, are the values of the elevation angle and its derivative 

at the end of the active segment of the trajectory when t = t,. 

bating (3.3) to zero, we obtain a relation for the determination of 

the quantity $= tJSaX 

cos$= I--?tzsin8, (3.4) 

or, considering (1.8), we obtain 
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* sin -z = (3.5) 

The available propellant mass fraction can be characterized by the 

ideal velocity v, which the vehicle acquires after expelling the pro- 
pellant supply in vacuum at a specific impulse J 

Then the maximum deflection of the vehicle from the unperturbed orbit 

with a given v will be from (1.81, (3.1), (3.5) and (3.6) 

(3.6) 

sin $ = (3.7 j 

An analysis of Equation (3.7) (curve f, Fig. 5) shows that with small 

values of n,, the maximum angle of rotation $ of the orbital plane of the 

vehicle from the original orbit is a 

periodic function that damps out as nz-+ 0. 

This is explained by the fact that when a 

constant direction of the lateral thrust 

during active flight is maintained, as ex- 

plained above, and the vehicle moves along 

a small circle of the terrestrial sphere, 

it will return periodically once every revo- 

lution to the original point, while the re- 

duction of the angle $ takes place during 

the even half periods. Thus, in order to 

increase the total deflection angle of the 

orbital plane .of the vehicle it is expedi- 

ent to reverse the direction of thrust 

during each half-period. 

‘Ihen, after an integral number of half- 

periods, IV, the rotation angle will be 

equal to 

(3.9) 

8 

Fig. 5. 

where, of course, +=A%. The general time of flight of the vehicle is 
determined by the Expression (3.11, and the time of one half-revolution 

from (1.6) T IL -= 
2 @qmT 

(3.9) 
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If t, is a multiple of r/2* then, determining the number of possible 
half-revolutions M and substituting its value into f3.81, we obtain 

For small values of nz we have 

(3.10) 

(3.11) 

An analysis of (3.10) shows that with thrust acceleration smaller than 
rzr corresponding to the expulsion of the entire fuel supply during the 
first half-revolution nzfr/2), and with an assumed cokdition of a short 
general time of the powered flight in one half-period, the magnitude of 
possible orbital plane rotation of the vehicle stays practically constant 
(points on Fig. 5). 

'Ike magnitude of the lateral force, which corresponds to the expulsion 
of the propellant during the first half-revolution, follows from f3.1), 
(3.6) snd f3.9) 

%(@) = [(zy _ $: (3.12) 

With an increase of nZf the value of the angle X/S grows and approaches 
asymptotically some limiting value. Physically this means that the faster 
the available propellant is being expelled (i.e. the larger the thrust 
acceleration nZ) the more will the vehicle deflect from the unperturbed 
orbit, 'Ibe maximum deflection of the vehicle with a fixed propellant 
supply takes place when II=-, =Q* i.e. in the case of an impulsive applica- 
tion of thrust 

lp; as n,-oa (3.13) 

A comparison of (3.11) and (3.13) showsSthst with a given character- 
istic velocity Y in the case of an impulsive action, the angle of orbit 
rotation is w/2 times larger than that with the studied smsll accelera- 
tions, 

4. In general, the condition that the time of active flight t, is not 
an integral multiple of the time of a half-period of the perturbed orbit 
is not satisfied. In order to determine the maximum possible orbital 
plane rotation in this case one can pursue the following couxse. At first 
we calculate the rotation angle of the orbital plane for an integral 
number of active half-revolutions 8*, given by equation (3.8). kring the 
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flight along this part of the trajectory a reversal of the direction of 

the lateral force in each half-revolution takes place at 4 = Nu. 

We have the following initial conditions for the last portion of the 

active segment 

‘Ihe time of active flight in this segment will be, of course 

At = t, - Nt/2 < z/2 (4.2) 

Thus, we arrive at a problem that is similar to the one studied above, 

but with different initial conditions on 8 and 4. The rotation angle of 

the orbital plane @will be equal, as before, to the maximum elevation 

angle of the vehicle from the initial orbit 0.*X which takes place along 

the passive part of the trajectory at the instant corresponding to d = 0. 

When we carry out calculations that are similar to the previous ones, 

with the exception of new initial conditions, we obtain expressions for 

the determination of the parameters at the end of the active segment 

6, = 00 l- 
fl cos c)* + n,sin 0* 

[ i 

2 ‘11 

coa ea 
--n,tanf3, il 

8 
_ 1 

a= sin 
n, (cos fJ* + nL sin Q*) + (sin 8* - nL cos 0*) cos 6 

1 +aZ2 

(4.3) 

(4.4) 

(Pa = tan-’ 
Jflfn,ain 6 

(cos~*+n,sin~*)cos6-nn,(sin0*-~n,cos~*) (4.5) 

Here 

Furthermore, studying the unpowered flight with the initial condi- 

tions, given by Expressions (4.3) to (4.5), we obtain in parametric form 

expressions for the vehicle trajectory after the termination of lateral 

thrust 

8 = sin-1 lfj, ~~-1 cos 8, sin w0 (t - ta) + sin ea cos coo (t - t,)] (4.6) 

(4.7) 

Equating e’ to zero (see (3.3)) and using (4.3), we obtain an 
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expression for the determination of the unknown rotation angle $ of the 
orbital plane of the satellite 

cos 29 = 2 [COS O* + n, (sin 0* - sin &)I2 - 1 (4.8) 

An analysis of Equation (4.8) (curve 2, Fig. 5) shows that for values 
of nz smaller than n,(r/2), given by Formula (3.12), the values of the 
rotation angle of the orbital plane $ oscillate around the values given 

by Formula (3.101, which gives + for a value of nZ corresponding to the 
expulsion of the propellant supply in an integral number of half-periods. 
The amplitude of the oscillations of $ in the case shown in Fig. 5 for 
v/V0 = 0.3 does not exceed 1 degree and decreases with a decrease of nz. 
lhe oscillation period is equal to the difference between the successive 
working times of the engine corresponding to the expulsion of the entire 
propellant supply in an integral number of half-revolutions. ‘lhus, just 
as the amplitude, the period of the oscillations also decreases with a 
decrease in the thrust acceleration nZ. 

5. In conclusion, let us note that when utilizing aerodynamic forces 
for the creation of the lateral force a rotation angle of the orbital 
plane with a given supply of propellant will vary in direct proportion 
to the magnitude of the aerodynamic effect, since the use of the aero- 
dynamic effect with a given lateral acceleration can be treated as a cor- 
responding change of the available characteristic velocity. 
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